Applications

Overview and Introduction

Knowledge Extraction

Knowledge Cleaning

Q&A

Break

Ontology Mining

Applications

20 min

Conclusion and Future Directions

Q&A

Product Knowledge Graph Applications

- Product knowledge graphs can have a plethora of applications in areas including:
 - Recommendation systems.
 - Search and question answering.
 - Product info and product comparison.
 - Among others.
- Applications can make use of knowledge graphs through:
 - The structured factual information for each product.
 - The connections in the overall graph structure.

Making Use of Structured Information

Facilitating structured product comparison

Making Use of Structured Information

Roll over image to zoom in

CeraVe Daily Moisturizing Lotion for Dry Skin | Body Lotion & Facial Moisturizer with Hyaluronic Acid and Ceramides | Fragrance Free | 19 Ounce

Visit the CeraVe Store ★★★★★ × 55,480 ratings | 321 answered questions Amazon's Choice in Body Lotions by CeraVe

Price: \$18.40 (\$0.97 / FL Oz) Get Fast, Free Shipping with Amazon Prime & FREE Returns

Get \$50 off instantly: Pay \$0.00 \$18.40 upon approval for the Amazon Rewards Visa Card. No annual fee.

Making Use of Structured Information

Get \$50 off instantly: Pay \$0.00 \$31.45 upon approval for the Amazon Rewards Visa Card. No annual fee.

Available at a lower price from other sellers that may not offer free Prime shipping.

Providing product options

Making Use of the Graph Structure

KitchenAid KSM150PSER Artisan Tilt-Head Stand Mixer with Pouring Shield, 5-Quart, Empire Red by KitchenAid ★★★★★ • 6,331 customer reviews | 972 answered questions List Price: \$429.99 Price: \$249.99 & FREE Shipping You Save: \$180.00 (42%) i Item is eligible for 6 Month Special Financing with your Amazon.com Store Card. Learn more Note: Not eligible for Amazon Prime. Available with free Prime shipping from other sellers on Amazon. Only 14 left in stock. Estimated Delivery Date: July 28 - Aug. 2 when you choose Standard at checkout. Ships from and sold by GE Premier in easy-to-open packaging. Ship to: Color: Empire Red Similar But Different More Capacity More Attachments **Different Brand** \$264.99 Prime

Richer and deeper product recommendation

\$264.99 + Free Shipping Sold by: Marcus AV

\$289.00 Prime

Sold by: goldentech

See more choices Kitchen Aid® MOE Codified®

Hamilton Reach 63232 Edectrics

See Color Options

See Color Options

KitchenAid KP26M1XER 6

Making Use of the Graph Structure

Overview, Definition, Applications

Knowledge Graph Embeddings

- The various KG applications make repeated use of knowledge graph embeddings (KGE).
- We will therefore recap the topic of KGE, then highlight the specificities of product knowledge graph embeddings (PKGE).
- KGE, and PKGE, also can have several standalone applications, that we highlight in this section.

Knowledge Graph Embedding

 \mathbb{R}^{n}

Node Classification

- If we know n1 is republican.
- And n3 is democrat.
- What can we say about n2?

PKGE, Compared to KGE

Text-heavy product description	 Descriptions provide a wealth of additional textual information. Requires explicit interaction of model with natural language.
User activity	 User activities, like product search, provide additional signals. Provide relations like product complement, co-view and substitute
Noise	 KGE facts are assumed to be well established and plausible. Facts in PKGE can be more noisy.
Hierarchical structure	 Hard to be embedded into Euclidean spaces. Can utilize hierarchical embeddings, like Poincaré embeddings.

- Xu et al., 2020, presented a PKGE model, that is tailored to the specificities of the retail domain.
- Knowledge graph of products, words and category labels as entities and relations as edges
- Their embedding model showed improvement in tasks including:
 - Search ranking.
 - Recommendation.
 - Knowledge completion.

- Modelling substitute Relation: Similar products should have similar embeddings.
 - Product substitute logs can represent such similarity.

- Modelling substitute Relation: Similar products should have similar embeddings.
 - Product substitute logs can represent such similarity.
- Self-attention mechanism for noise-robust handling for complement, co-view, describe and search Relations.

- Modelling substitute Relation: Similar products should have similar embeddings.
 - Product substitute logs can represent such similarity.
- Self-attention mechanism for noise-robust handling for complement, co-view, describe and search Relations.
- **Poincaré embedding** for the category hierarchy

Product Knowledge Graph Applications

Recommendation Systems, Search and Question Answering

Recommendation Systems

- Recommendation systems play a major role in eCommerce.
 - Enhance customer experience.
 - Drive revenue.
 - Maintain engagement.
 - Among others.
- PKGs play a big role in improving overall recommendation quality, in terms of:
 - Recommendation accuracy.
 - Recommendation diversity.
 - And recommendation explainability.

Product Recommendation Systems

- We can think of different variations of product recommendations:
 - Product substitutes.
 - Related products.
 - Complementary product recommendation.
- Behavior-based Product Graph (BPG):
 - BPGs can be very useful for recommendation systems.
 - BPG is constructed with nodes
 as items with catalog features
 co-purchas
 (type, etc) and edges as pairwise
 relations based on customer behavior.

Hao et al.,. 2020. P-Companion: A Principled Framework for Diversified Complementary Product Recommendation. Proceedings of the 29th CIKM conference.

Specificities of Product Recommendation Systems

Recommendation diversity	•	Recommendation diversity is critical for eCommerce. Making related recommendations only is not enough.
Complementary recommendations	•	Simple co-purchase patterns might not be enough. Need semantic signal for complementary recommendations.
Recommendation interpretability	•	Explicit paths in KGs provide a better explainability potential.
Hierarchical structure	•	The product taxonomy and categories help in all previous issues.

Complementary Product Recommendation

- Complementary product recommendation (CPR) aims at providing product suggestions that are often bought together.
- Co-purchased products are not always complementary.

Hao et al., 2020. P-Companion: A Principled Framework for Diversified Complementary Product Recommendation. Proceedings of the 29th CIKM conference.

Product Complement Systems

Main components in Hao et al. 2020 complementary recommendation model:

 Product2vec: Pretrained product embeddings based on customer behavior data.

Hao et al.,. 2020. P-Companion: A Principled Framework for Diversified Complementary Product Recommendation. Proceedings of the 29th CIKM conference.

Product Complement Systems

Main components in Hao et al. 2020 complementary recommendation model:

- Product2vec: Pretrained product embeddings based on customer behavior data.
- Type transition: complementary product type prediction task (as opposed to actual products).
- Item prediction: Complementary product prediction from product type.

Product2Vec

- Just like the other "*2Vec" family. Learns pretrained representations for products that preserve similarities.
- Leverages user behavior logs, and the co-purchase relation in particular to build a graph, and use graph attention network.
- Very useful in cold-start products in many applications, especially recommendation systems.

Hao et al., 2020. P-Companion: A Principled Framework for Diversified Complementary Product Recommendation. Proceedings of the 29th CIKM conference.

Explainable Product Recommendation

- The paths in PKGs also allow for explainable recommendation, through explicit reasoning.
- Xian et al., 2019, use reinforcement learning to identify recommendation paths from a user to product.

Product Search and Question Answering

User activity	• User search logs and purchases, product complements, co-view and substitute are very useful.
Multilingual search	 e-Commerce platforms serve many countries with several languages. Ideally, should facilitate multilingual search to support scale.
Dynamic taxonomy	 Taxonomy enrichment and relation discovery.
Noise	 Facts in PKG can be noisy, which can affect results. Importance of data cleaning.

Product Search

- Lu et al. 2020 presented a multilingual graph-based product search and retrieval model.
 - Transformer-based encoding.
- Present query-to-product relationships as a bipartite graph.
 - Product (B) to query (A, C, and D) mapping.
 - Neighbouring queries (D, C) from search log.
 - A (positive sample) used to train query encoder.

Product Search

- Product encoder:
 - Takes product, and neighboring queries as input.
 - Transformer-based model.
 - Convolutional Graph Networks to learn representation.

Product Search

- Product encoder:
 - Takes product, and neighboring queries as input.
 - Transformer-based model.
 - Convolutional Graph Networks to learn
 representation.

- Query encoder:
 - Transformer-based encoder. for the query text.

Product Search Challenges

- Exact match in search results, based on main query attributes, is very important in the product domain.
- Among the notable challenges facing product search is the incomplete taxonomy and overall factual knowledge.
- Completeness and scalability in PKGs help a lot on this regard. Direct access of product descriptions is also important.

Product Search Challenges

Conversational Product Search

- A natural extension to search and recommendation applications.
- Personal assistants are pervasive now, so inquiring about products, and asking for product recommendations, is a logical skill to add.
- Same setup as search techniques, with iterative turns, powered by product attributes, to further identify most relevant product.