Conclusions and Future Directions

Overview and Introduction

Knowledge Extraction

Knowledge Cleaning

Q&A

Break

Ontology Mining

Applications

Conclusion and Future Directions

10 min

Q&A

- Textual product profiles. Other modalities complement text.
 - Explicit natural language handling is critical.

Other modalities

Primarily text heavy

• Product images can provide important additional signals.

Primarily text heavy	 Textual product profiles. Other modalities complement text. Explicit natural language handling is critical.
Other modalities	• Product images can provide important additional signals.
Noise	 Product profiles and corresponding facts can be noisy. Need explicit noise handling, and data cleaning steps.

Primarily text heavy	•	Textual product profiles. Other modalities complement text. Explicit natural language handling is critical.
Other modalities	•	Product images can provide important additional signals.
Noise	•	Product profiles and corresponding facts can be noisy. Need explicit noise handling, and data cleaning steps.
Hierarchical structure	•	The product taxonomy is mainly hierarchical in nature.

Primarily text heavy	 Textual product profiles. Other modalities complement tex Explicit natural language handling is critical. 	t.
Other modalities	 Product images can provide important additional signals. 	
Noise	 Product profiles and corresponding facts can be noisy. Need explicit noise handling, and data cleaning steps. 	
Hierarchical structure	• The product taxonomy is mainly hierarchical in nature.	
Dynamic taxonomy	 Constantly emerging product categories. Automatic taxonomy enrichment. 	

Primarily text heavy	 Textual product profiles. Other modalities complement text. Explicit natural language handling is critical.
Other modalities	• Product images can provide important additional signals.
Noise	 Product profiles and corresponding facts can be noisy. Need explicit noise handling, and data cleaning steps.
Hierarchical structure	• The product taxonomy is mainly hierarchical in nature.
Dynamic taxonomy	 Constantly emerging product categories. Automatic taxonomy enrichment.
User activity	• User search logs, product complement, co-view and substitute purchases can be very useful.

Knowledge Extraction Takeaways

- **Definition**: Find values for a given product and a set of attributes.
- **Recipe**: Sequence tagging.
- **Key to Success**: Scale up in different dimensions (#attributes, #categories).
- Applicability to other domains: Domains like finance, biomedical etc, where the "subject" is known.

Knowledge Cleaning Takeaways

- **Definition**: Finding wrong attribute values.
- **Recipe**: Identify data inconsistency column-wise, row-wise, source-wise and across sources.
- Key to Success for Products:
 - Leverage rich textual information of unstructured data as context
 - Solution with aware of taxonomy.
- Applicability to Other Domains: Domains like: medical, legal, etc.
 - Domains with heavy text data.
 - Rich taxonomy information.

Ontology Enrichment Takeaways

- **Definition**: discover relations between product categories and attributes.
 - Attribute Applicability: "Is an attribute applicable to one product category?"
 - Attribute Importance: "Is an attribute important when people are making their purchase decisions?"
- Recipe: Text Mining and Graph Mining.
- Key to Success for Products: Leverage both seller/customer inputs.
- Applicability to other domains:
 - An increasing variety of relationships or predicate diversity.
 - Quantify the relation strength.

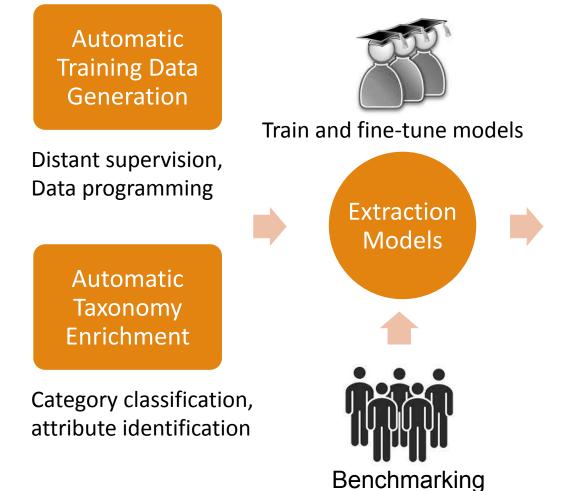
Applications Takeaways

- Applications of product knowledge graphs can make use of:
 - The structured factual information for each product.
 - The product connections in the overall graph structure.
- The graph structure also allows the utilization of graph level constructs, like knowledge graph embeddings, which is useful for many applications.
- General applications of knowledge graphs include recommendation systems, search, among others.

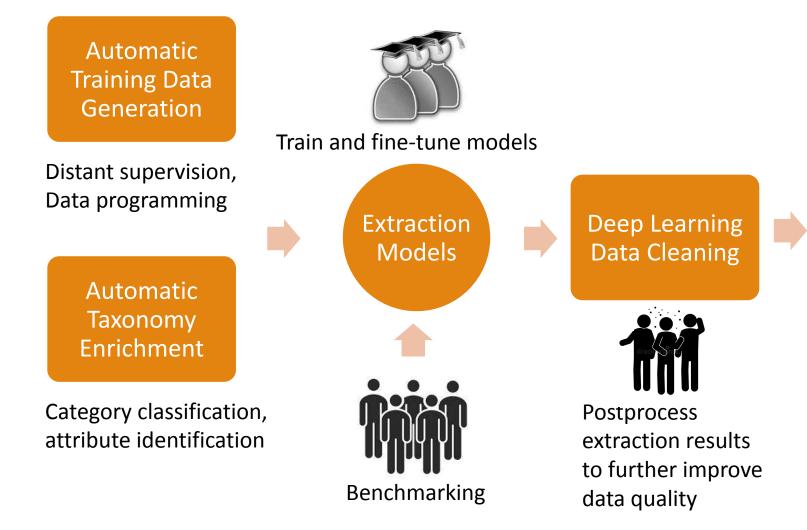
Understand domain and attributes, and generate LOTS OF training data

Identify product taxonomy and attributes

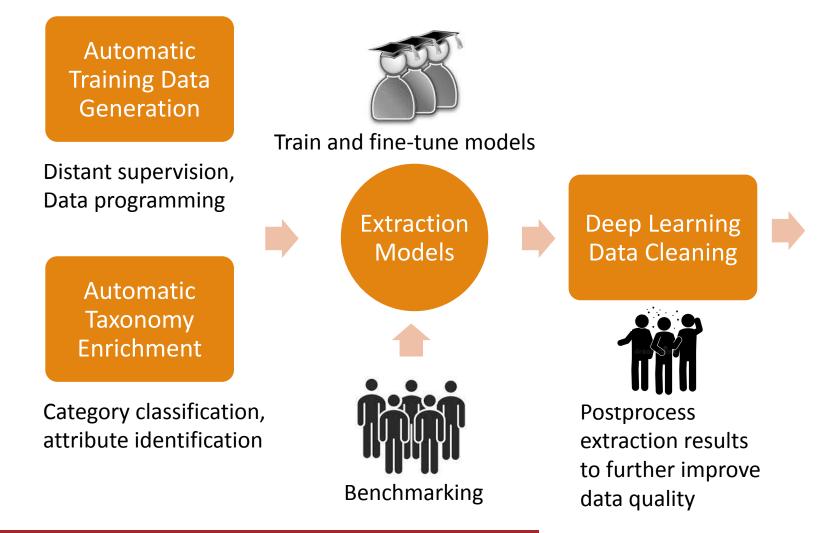
Train and fine-tune models


Extraction Models

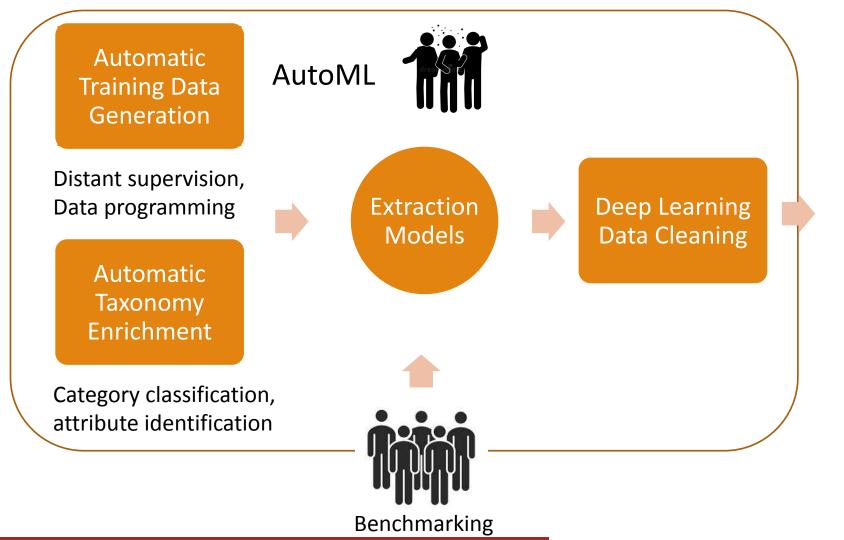
Postprocess extraction results to further improve data quality


Pre-publish evaluation as gatekeeper to guarantee high quality data

Postprocess extraction results to further improve data quality



Pre-publish evaluation as gatekeeper to guarantee high quality data



Pre-publish evaluation as gatekeeper to guarantee high quality data

Scale-up pre-publish evaluation w. lower labeling needs

Scale-up pre-publish evaluation w. lower labeling needs

Practical Tips

• Training data

- Mainly distant and weak supervision approaches.
- Some manual rules to enhance quality is a good investment!
- Check values distribution, and any outliers.

• Evaluation:

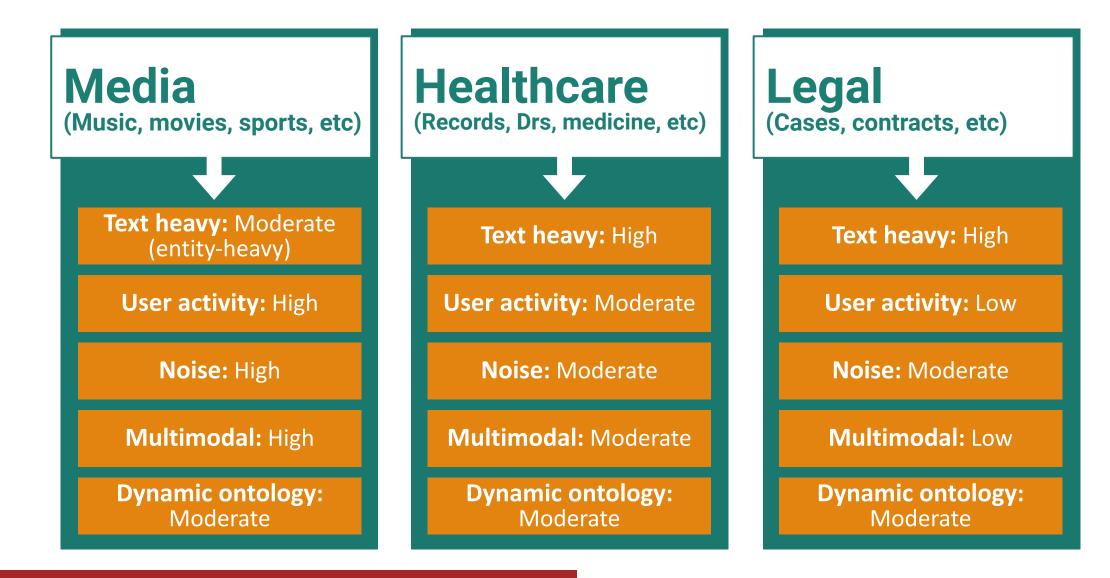
- Two-step evaluation process:
 - 1. Annotate benchmarks to iterate while model training.
 - 2. Evaluate a predictions sample when model is ready.
- Update model based on benchmarks.
- Post-processing rules when manual intervention is unavoidable.

Practical Tips

• Modeling scope

- Categorical classification: When target space is closed and small, and when handling implicit values.
- Textual extraction: In open-world cases, and when target values tend to be mentioned explicitly.

• Prediction confidence


• We set thresholds based on prediction confidence to filter out predictions, and balance precision and recall

Practical Tips

• Human in the loop

- We strive for scale and automation, while maintaining accuracy.
- Achievable, through balancing automation and human input, at the right place.
- Empower humans with the right tools and analytics tools.

Applicability to other Domains

Future Directions

We identified the following themes for future directions:

• Training data:

- Make better use of unlabeled and seed datasets.
- Enhance data quality through better data programming methods.
- Ensembling and multitask methods:
 - Ensemble data cleaning methods, syntactic, semantic, graph, etc.
 - Ensembling tagging and classification methods.
 - Taxonomy Enrichment and Relation Discovery in one shot.

Future Directions

• Multi-modal/multi-source signals:

- Better handling of multi-modal extraction.
- Better utilization of user logs, like search, co-purchase, etc.

• Personalization

- Better embedding users, venders, brands, etc.
- Better connection with customer behavior.

• Connect private to public data

• Incorporate common sense knowledge like ConceptNet to clean the data.

Questions

Overview and Introduction

Knowledge Extraction

Knowledge Cleaning

Q&A

Break

Ontology Mining

Applications

Conclusion and Future Directions

Q&A

10 min